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In this paper we present mean velocity distributions measured in several different
wave flumes. The flows shown involve different types of mechanical wavemakers,
channels of differing sizes, and two different end conditions. In all cases, when surface
waves, nominally deep-water Stokes waves, are generated, counterflowing Eulerian
flows appear that act to cancel locally, i.e. not in an integral sense, the mass transport
associated with the Stokes drift. No existing theory of wave–current interactions
explains this behaviour, although it is symptomatic of Gerstner waves, rotational
waves that are exact solutions to the Euler equations. In shallow water (kH ≈ 1), this
cancellation of the Stokes drift does not hold, suggesting that interactions between
wave motions and the bottom boundary layer may also come into play.

1. Introduction
In his original work on water waves, Stokes (1847) discovered an interesting and

significant property of the waves that now bear his name. To lowest order in wave
slope, ε = ak (a is wave amplitude and k is the wavenumber), the potential solution
for water waves involves orbits that, at O(ε2), are not closed (see Kinsman 1984). For
deep-water waves (kH � 1; H =fluid depth), this results in a net forward motion of
fluid particles known as the Stokes drift, which can be approximated:

US = ε2

(
σ

k

)
exp(2kz), (1)

where σ is the angular frequency, given for deep-water waves by the dispersion
relation (correct to O(ε2))

σ 2 = gk (2)

and z is the vertical position measured positive upwards from the mean water level
(which is constant to O(ε2)). If a constraint of zero net mass flux is imposed, a
depth-independent retrograde mean Eulerian velocity, UE , i.e. the Eulerian velocity
measured at any point and averaged over a wave period, must develop (cf. Swan
1990b), such that the change in UE induced by the waves is equal and opposite to the
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depth average of the Stokes drift, i.e.

UE = − ε2C

2kH
(3)

where C = (σ/k) = the phase velocity of the waves. Note that above and in what
follows, we use an overbar to indicate mean variables, by which we imply variables
that are averaged over a wave period to filter out the periodic perturbations due to
the waves (see Andrews & McIntyre 1978). In their development of a comprehensive
theory of wave–current interactions using the generalized Lagrangian mean (GLM)
formulation, Andrews & McIntyre (1978) show that correct to O(ε3),

UL(z) = UE(z) + US(z), (4)

where UL is the mean Lagrangian velocity and US is given to O(ε3) for deep-water
waves by (1).

Longuet-Higgins (1953) reconsidered Stokes’ result, adding significant corrections
for the mass transport velocity due to the effects of thin viscous boundary layers that
do not disappear in the limiting case of zero viscosity. He showed that in a closed
channel when a purely viscous solution is valid, i.e. when a � δ, where δ = (σ/ν)1/2 is
the thickness of the wave boundary layer (ν is the kinematic viscosity of the fluid), a
pressure-gradient-driven compensation flow is established that provides the retrograde
mass flux required to preserve local mass conservation. Additionally, as a consequence
of phase shifting of the vertical and horizontal velocities in the wave boundary layer,
a net stress is felt by the Eulerian flow that increases the total net flow. In this
case, vorticity enters the interior of the fluid by diffusion, presumably requiring a
time of O(H 2/ν) to be established. However, Longuet-Higgins also pointed out that
when a > δ, vorticity could be transported into the interior of the fluid via horizontal
advection by the mass transport velocity itself rather than by diffusion.

Russell & Osorio (1958) reported the results of laboratory experiments with mostly
(although not exclusively) shallow-water waves in which the velocities derived from
the displacements of small particles and dye lines. These compared favourably to
predictions made using Longuet-Higgins’ theory, with the agreement being best for
viscous flows in the bottom boundary layer. The comparison of surface velocities
was more equivocal, since for deep-water waves Russell & Osorio’s measurements
showed mean Lagrangian velocities approximately equal to the Stokes drift (cf. their
figure 14). The problem with this result is that for a viscous flow with a contaminated
surface (as described by Russell & Osorio, the surface was either dirty or covered
with a surfactant that they had added to the flow), UL should be as much as twice
what is suggested by (1) (see e.g. Law 1999). Swan (1990b) carried out laboratory
experiments aimed at testing the effectiveness of advection at establishing vortical
mean flows under waves. His experiments demonstrated that contrary to all theoretical
expectations, Eulerian mean flows with negative vorticity developed. He attributed
this to backwards advection, presumably by the mean return flow, of vorticity from the
beach upon which his waves broke and were dissipated (see Matsunaga, Takehara &
Awaya 1994).

Swan is not alone in finding negatively sheared mean Eulerian flows below water
waves. For example, in their work on wave–current interactions and bottom boundary-
layer modification, Kemp & Simons (1982) observed reductions in the mean Eulerian
velocity owing to the addition of waves onto turbulent channel flows. This reduction
was strongest near the water surface and increased with increasing wave amplitude.
Jiang & Street (1991) measured mean Eulerian flows that were in opposition to
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Figure 1. Sketch of the wave–current flume used by Nepf et al. (1995).

mechanically generated waves propagating down a large windwave flume with closed
ends. They found that the negative Eulerian velocities appeared to compensate for the
Stokes drift such that material lines (e.g. a dye line) did not deform as expected from
Stokes’ theory (J. Y. Jiang, personal communication 1990). Groeneweg & Klopman’s
(1998) theory of wave–current interaction (see also Groeneweg & Battjes 2003) also
based on GLM theory but including turbulence and wave evolution, successfully
predicted similar alterations to the mean flow by waves, as measured by Klopman
(1994).

In the rest of this paper we discuss further observations of the type presented by
Jiang & Street. We consider velocity measurements made in the wave flume described
by Nepf et al. (1995). Some of these were made in the course of the experiments
described by Nepf et al. (1995), and some were made later to specifically look at
establishment of the mean flow. We also re-analyse the experimental data given in
Jiang & Street (1991), Swan (1990b) and Thais (1994). In sum, these experiments find
consistently that waves generated in various wave flumes do not alter the pre-existing
Lagrangian mean flow.

2. Experiments with waves on a mean current
2.1. Experimental methods and facility

The first set of experiments we discuss were made in the flow-through wave flume at
Stanford University used for the studies reported by Nepf (1992), Nepf & Monismith
(1994) and Nepf et al. (1995). A sketch of this flume is given as figure 1. The test
section of the flume is 1.2 m wide, 4.9 m long and typical flow depths for the results
discussed herein was 10 cm. The depth in the channel is controlled by a broad-crested
weir located at the downstream end of the channel. Because it is a hydraulic control,
this weir also serves as a nearly-reflectionless beach. The superimposed flow enters the
channel through a diffuser, rises vertically then passes through a 2:1 horizontal quintic
contraction into the test section. In some experiments, a curved screen (designed
according to Coehlo 1989) was used to create positive and negative velocity shear of
approximately ±1 s−1 in the mean velocity profile outside the boundary layer. Typical
mean flow velocities were 12 to 14 cm s−1.



134 S. G. Monismith, E. A. Cowen, H. M. Nepf, J. Magnaudet and L. Thais

0

–0.1

–0.2

–0.3

–0.4

–0.5

–0.6

–0.7

–0.8
9 10 11 12 13 14 15 16

z–
H

UE (cm s–1)

Figure 2. UE measured 25 cm downstream of the wavemaker in the absence of waves (taken
from Kimmel 1994).

The wavemaker used in this facility is comprised of an 85 mm diameter cylinder
that is driven mechanically through a small arc by an electric motor. The mean
submergence of the cylinder (typically 20 to 30 mm) and its stroke (range: 0 to
25 mm) are adjustable. The arc described by the cylinder entails a small degree of
horizontal motion as well as vertical motion (it is not quite a piston) which causes
the waves that it makes on the downstream side to the different from those on
the upstream side. This wavemaker also serves to strip the surface film off the flow
entering the channel.

For a range of 2 to 4 Hz, the waves made by the wavemaker appear to be Stokes
waves in that their shapes can be described well by that of a Stokes second-order wave
(Nepf & Monismith 1994). When ε > 0.25, the waves break (spilling-type breaking)
continuously for four or five wavelengths as they leave the wavemaker (Nepf et al.
1995).

Eulerian velocities were measured to within 5 mm of the wave troughs 140 cm
downstream of the wavemaker with one and two component laser-Doppler veloci-
meters (Nepf 1992). Lagrangian surface velocities were measured by timing the
motions of 3 mm plastic particles floating on the water surface as they travelled from
a point near the centre of the channel 1 m downstream of the wavemaker to a point
3m downstream. Wave heights were measured with a standard single-wire capacitive
wave height gauge (see e.g. Cheung & Street 1988).

2.2. Results: velocity measurements

The flow past the wavemaker generates a strong shear layer owing to separation
of the flow behind the moving cylinder. A sample velocity profile measured 25 cm
downstream of the wavemaker in the absence of waves is shown in figure 2 (taken
from Kimmel 1994). However, this shear layer diffuses rapidly, relaxing to the velocity
profiles shown below. Changes in time-averaged streamwise velocity owing to static
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Figure 3. Effect of a wave (f =3.6 Hz; ε =0.22) on the Eulerian mean velocity profiles of a
flow with an imposed negative shear. The profiles given are for – – –, UE – no waves; �, UE –
flow with waves; �, UL – flow without waves.

changes in the wavemaker position, measured 5 mm below a flat surface, were within
the range of variation found for the time-averaged streamwise velocity using 200 s
averages.

The principal finding in this experiment is as follows. When non-breaking waves
were imposed on the flow, the time-averaged Eulerian velocity was reduced near the
surface. An example of this behaviour for a flow with an imposed negative shear of
roughly 1 s−1 is given as figure 3. However, if we add the Stokes drift velocity at each
depth (equation (1)) to produce UL, we recover the original mean Eulerian profile.
As a consequence, as one should expect, the total mass transport, which is provided
by pumps, is unaffected by the waves. However, this appears to hold in a pointwise
rather than integral fashion.

To check the generality of the effect demonstrated in figure 3, we compare the
measured change in the mean Eulerian velocity �UE for several conditions (both
with and without negative imposed shears) to what one would predict if �UE = −US

i.e. that UL was unaffected by the waves. Accounting for the effects of finite depth
(e.g. Dean & Dalrymple 1991), the appropriate expression for US is:

US

ε2C
=

cosh(2k(z + H ))

2 sinh2(kH )
. (5)

The result of this comparison (figure 4) indicates that UL is indeed unaffected by the
waves in this flow. This should be qualified: we have not included breaking waves
in this comparison. Indeed, when the waves have broken, the near-surface shear is
virtually eliminated (Nepf et al. 1995), implying changes in UL.

The hypothesis that UL remains constant up to the point of wave breaking can
be assessed by examining Lagrangian velocities directly. For this we used floating
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Figure 4. Effect of waves on mean flow −�UE: —, assuming constancy of the Lagrangian
mean velocity with US given by (5) and after the removal of the dependence on kH ; �, kH = 4,
ε = 0.25; �, kH = 1.9. ε = 0.14; �, kH = 1.5, ε = 0.16; ×, kH =1.4. ε = 0.19; and +, kH = 5.3,
ε = 0.22; �, kH = 4.2, ε = 0.25 (no imposed shear); �, kH =2.2, ε =0.22 (no imposed shear);
�, kH = 1.04, Klopman (1994) wave on co-flowing current.

particles. Figure 5 shows the surface velocity measured for one wave frequency
(3.24 Hz), and a sequence of different amplitudes, expressed as wave slopes (ε). To cal-
culate k, we used the Doppler-shifted dispersion relation

σ =
√

gk tanh(kH ) + UEk. (6)

We have also included a plot of the surface value of UL calculated assuming that
the Eulerian flow remains unchanged. As seen in figure 5, the constancy of UL at the
surface (at least up to breaking) is clear.

2.3. An unsteady experiment

It is possible that negative vorticity can be produced on the wavemaker in order to
satisfy the flow condition that UL be equal to the mean velocity of the wavemaker
(Andrews & MacIntyre 1978), i.e. that UL = 0 there. This vorticity could then be
advected from the wavemaker by any downstream mean flow. This would correspond
to Longuet-Higgins’ (1953) convection solution. If we were to start the wavemaker,
then we would expect that this vorticity would arrive at a given distance downstream
of the wavemaker in a time determined by the advection of that vorticity by the mean
flow.

To test this idea we carried out a simple experiment in the large wave–current
facility described in Cowen, Monismith & Koseff (1996). On the back wall of the
inlet section, this flume has a wavemaker that operates effectively like a hinged plate;
it was designed to minimize flow disturbance. The simple experiment we carried out
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was to start the wavemaker, record the change in flow as the waves arrived, and then
stop the wavemaker. Because the mean flow was turbulent, we repeated this transient
wave generation 150 times and then ensemble averaged the low-pass filtered flows
that resulted. We present one example of this behaviour for which k = 0.072 cm−1,
ε = 0.1, kH = 2.1, C = 122 cm s−1, and UE = 8.5 cm s−1 without waves, although we
made several similar tests.

In figure 6, we plot one realization of the time-varying wave amplitude, calculated
using the Hilbert transform (cf. Melville 1983), and the ensemble-averaged low-pass
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filtered velocity, both determined using a one-component laser-Doppler anemometer
(LDA) positioned 48 mm below the at-rest free-surface position approximately 10 m
downstream of the wavemaker. At this depth, based on the observations above, we
expect a reduction of approximately 6 mm s−1. The mean velocity shows damped
long-wave oscillations, and the expected reduction. Most importantly, the reduction
arrives and leaves with the waves: the advection time for vorticity is predicted to
be roughly 120 s, whereas the wave group should arrive 15 s after the wavemaker is
started.

This type of behaviour of the mean flow is described in McIntyre (1981) who
discusses the analysis of Longuet-Higgins & Stewart (1962) of wave group behaviour
and radiation stresses. According to Longuet Higgins & Stewart (1962), it is expected
that an irrotational mean flow will be coincident with the waves. However, the
depth scale for this slowly varying flow is the inverse of the width of the group
in wavenumber space; i.e. if the energy of the group is contained in a band of
wavenumbers of width �k, the vertical scale of decay is found to be �k−1. In the
present case, because the group is very long, the wave energy is confined to a very
narrow range of wavenumbers (from spectra we find �k < 0.1k), hence we should
expect to see a nearly depth-independent flow, i.e. the mean velocity should be given
by (3), namely 3 mm s−1. This value clearly underpredicts the change in mean flow
due to the waves. In contrast, the observed velocity reduction of roughly 6 mm s−1 is
close to what one would calculate using (1), i.e. 6.1 mm s−1.

Thus, the induced velocity difference near the surface is associated purely with the
waves, and cannot be the result of (slow) advection of vorticity from the wavemaker
or the far end of the tank. This behaviour is also consistent with the observations
presented in § 2.3 in that in the smaller flume, the wake of the cylinder manages to
diffuse away leaving only the Stokes drift reduction in its place. However, since we
have not directly measured vorticity, we cannot conclude that vorticity arrived with
the waves. Instead, we can only say that a velocity change consistent with that which
we observe for steady flows comes and goes with the waves. Given that the steady
flows are rotational, it does seem possible that the unsteady flows are also rotational.

3. Experiments with wavemakers in closed channels
3.1. The experiments of Jiang & Street (1991)

These measurements were carried out in the 22 m long, 0.91 m wide wind-wave
facility formerly located at Stanford. This facility included a hydraulically driven
piston-type wavemaker that generated waves mechanically. Jiang & Street measured
time-averaged profiles of the streamwise velocity under 1 Hz waves (kH = 4; ε = 0.088)
using a single-component LDA. Their figure 2 is reproduced here as figure 7, although
their data have been replotted so as to facilitate comparison with our hypothesis that
UE = −US in the presence of waves. As we found in the flowing channel, the mean
Eulerian velocities, almost exactly cancel the Stokes drift, i.e. leading as before to
UL =0 at all depths.

3.2. The experiments of Swan (1990b)

These experiments were carried out in a wave tank at Cambridge University that
‘is 0.6 m wide, 18.5 m long, and has a beach slope of 1:20’, and had a piston-type
wavemaker (Swan 1990). The waves he studied had σ ≈ 7 s−1, ε ≈ 0.16 and kH ≈ 1.8.
There was no imposed mean flow in these experiments. As Swan (1990) notes, breaking
of the waves on the beach led to considerable three-dimensionality in the velocity
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field near the beach (his figure 1), although all three profiles he gives, which were
taken at different spanwise locations, show backflow and similar negative shears, i.e.
that the backflow intensifies with height, much as the Eulerian deficit increases in the
experiments discussed above.

In figure 8, we re-plot the other two full-depth profiles he gives (his figures 2 and
5a) with the profiles one would expect, given the constancy of UL, which in this case
should be zero. The first profile was measured in the centre of the tank whereas the
second was measured near to the beach. For the purposes of the comparison, we
have subtracted a constant offset of 20 mms−1 (approximately 55 % of the surface
Stokes drift velocity), the mean velocity observed near the bottom, from the second
profile. While it is not clear why the mean velocity should be offset, the agreement
of measurements and the prediction that UE = −US is clearly quite good. In fact, if
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dimensionless variables are the same as those in figure 7.

offset by varying amounts between 10 and 30 mm s−1, all of his measured profiles are
similar to those shown above, i.e. UE(z) = −US(z) + constant.

3.3. The experiments of Thais (1994)

The last measurements we discuss are those made in the large wind-wave facility at
IMST Luminy in Marseilles. This tank is 40 m long and 2.6 m wide. A water depth of
0.9 m was used for the experiments described by Thais (1994) in which he examined
the effects of waves on wind-driven currents. Mean velocity measurements were made
with a fibre-optic two-component LDA connected to spectrum-analyser-type ‘burst’
processors.

Figure 9 plots Thais’ (1994) data for a 1.0 Hz wave with ε = 0.1 in the absence
of wind. These measurements were made after letting the wavemaker run for ∼3 h.
Again the strong backflow is seen near the surface, and as before, the time scale of
advective establishment is too long, and the vorticity is of the opposite sign of that
given by Longuet-Higgins’ viscous solution. In this case, the comparison between the
measured velocity and the distribution of UErequired for UL = 0 is not as good as
in the two cases cited above. In particular, the return current decays more quickly
over depth and is stronger than what would be predicted assuming that UL =0 at all
depths. Nonetheless, UL =0 at the surface, and the trend and magnitude are similar
to what would be expected assuming our hypothesis to hold.

4. Discussion
4.1. Summary of the observations

The measurements we present above show systematically that mechanically generated
waves create mean Eulerian flows that are directed in the opposite direction to wave
propagation. This result seems to hold with and without mean flows and with very
different types of wavemakers and channel size. Considered from the standpoint of
extant theory, it is even more surprising that the induced backflow can exactly cancel,
at each depth, the mass transport associated with the Stokes drift. This effect does
not appear to be associated with the transport of vorticity from the wavemaker, nor
does it appear to result from diffusion, since there is no negative vorticity source
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Reference Type of flow Flow kH

Nepf et al. (various) Open (pumped) Turbulent 1.4 to 4
Cowen et al. (various) Open (pumped) Turbulent 2.1
Klopman (1994) Open (pumped) Turbulent 1.04
Jiang & Street (1991) Closed (zero transport) Laminar 4
Swan (1990) Closed (zero transport) Laminar 1.8
Thais & Magnaudet (1996) Closed (zero transport) Laminar 4

Table 1. Summary of experiments.

that can be identified (the surface boundary layer should contain positive vorticity –
Longuet Higgins 1953, 1960, 1992). As a consequence, for these experimental flows,
we conclude that UL is little affected by the addition of waves. That is, the waves do
not alter the ‘mean flow’ as seen from a Lagrangian perspective.

4.2. Comparison of observations with theory

How do these observations compare to existing theory? Groeneweg & Klopman (1998)
extended the GLM model of Leibovich (1980) for wave–current interactions to include
a wave-affected turbulence closure as well as for changes in wave amplitude due to
damping of the waves. In their paper, comparison of this theory with observations
made by Klopman (1994) for waves propagating with and against turbulent flows
showed good agreement between predicted and observed velocity profiles.

Huang & Mei (2003) developed a similar analysis. They also predict near-surface
reductions in the mean Eulerian flow for waves propagating with the current. Their
analysis makes clear that in two dimensions, the key term available to change
the mean flow profile is a depth-variable force that arises from the interaction of
the vertical wave velocity and the wave-periodic vorticity (termed orbital vorticity by
Magnaudet & Masbernat 1990). Huang & Mei show that when the periodic Reynolds
stresses can be computed as the product of an eddy viscosity that is constant in time
and the periodic (wave) velocity gradients, this body force is proportional to the
curvature of the assumed eddy viscosity profile. Setting aside the issue that this form
of turbulent closure may be inappropriate for wavy turbulent flows (Monismith &
Magnaudet 1998; Teixera & Belcher 2003), there is still the requirement that for this
mechanism to work, the underlying flow must be turbulent. In contrast, the obser-
vations of reductions in Eulerian mean flow we report above took place in flows that
were turbulent and in flows that were laminar, i.e. without respect to whether the
flow was laminar or turbulent (see table 1). Thus, these observations suggest that the
presence of turbulent stresses is not a necessary condition for vertical variations in
the mean Eulerian flow to develop in the presence of waves.

An alternative analysis can be developed using the work by Mellor (2003) who
extended classical radiation stress theory (Longuet-Higgins & Stewart 1962) to include
vertical variations in mean flows interacting with waves. As shown in the Appendix,
the mean Eulerian flow that is created should cancel the Stokes drift transport in
an integrated fashion only, not pointwise as shown above. While consistent with the
analysis of Longuet-Higgins & Stewart (1962, see also McIntyre 1981), this theory
too does not explain the laboratory observations discussed above.
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A different model for the waves that are created in the laboratory is one in which
those waves have zero net particle displacements. If this is so, then negative mean
Eulerian flows are a necessary consequence of the positive Stokes drift. They will be
seen when the waves are present and will disappear as soon as the waves leave. It is
well known that the Gerstner wave (Kinsman 1984), a periodic deep-water wave that
exactly satisfies the free-surface dynamic and kinematic boundary conditions, has this
property, i.e. it has closed orbits. To lowest order in ε, the Stokes and Gerstner waves
are identical; however, at O(ε2), the Gerstner wave has a mean Eulerian flow

UE = −US,

i.e. exactly what we observe and have presented above.
Thus, given that the change in the Eulerian mean flow that accompanies Gerstner

waves does not require that turbulence be present, it would appear that the Gerstner
wave model provides a simple and accurate description of what we have observed
in the laboratory. In a similar fashion, Gjøsund (2000, 2003) makes extensive
comparisons between wave velocity predictions made using a generalization of
Gerstner theory to arbitrary depth and time-varying amplitudes and observations
made in a large laboratory wave tank. Again, the comparison is excellent, with the
extended theory (which too does not include turbulence) consistently predicting the
negative Eulerian mean velocities that develop when waves are present.

While the measurements we describe above conform well to the Gerstner model,
there are examples of direct measurements of wave behaviour in the laboratory that
appear to support the Stokes model. Notably, nine experiments with deep-water
waves presented by the Beach Erosion Board (1941) show net particle displacements
roughly in accord with (1) as modified to include a mean velocity such that the total
horizontal drift is zero. A second feature of Gerstner waves that differs from that
of Stokes waves is that their phase velocity and thus wavelength are independent
of amplitude, whereas Stokes waves have a correction to phase velocity and thus
wavelength that is second order in ε. While the Beach Erosion Board (1941) found
the Gerstner model to be slightly better in predicting phase velocity and wavelength,
both the Gerstner and Stokes models were within 1 % of the measured values for
both phase velocity and wavelength, an amount certainly likely to have been well
within experimental error. Wiegel (1964) also presents measurements of wavelength
dependence on amplitude; these too do not show the trends expected for Stokes
waves, although again the changes in wavelength that must be measured are only a
few per cent of the wavelength itself.

Most importantly, there is a well-known difficulty with Lagrangian waves such as
the Gerstner waves: they are rotational (cf. Lamb 1932, art 251). This important point
is puzzling because there does not appear to be any obvious explanation of how the
vortical flow associated with the Stokes drift reduction is established, nor how it can
propagate at the group velocity of the waves, in the case of time-varying amplitudes.
In the case of the vortical boundary layers of the Stokes wave (Longuet Higgins
1992), vorticity is fluxed through the surface so as to maintain the zero stress (not
zero vorticity) condition on the surface. Over a long time, this vorticity can be diffused
through the fluid. However, this vorticity has the opposite sign to what we observe, and
only enters the body of the fluid over the long times that characterize viscous diffusion.
Thus, vorticity diffusion from the surface cannot be used to explain our observations,
especially the transient behaviour noted in § 2.4. Thus, while the Gerstner wave may
be a viable kinematic explanation of our observations, the dynamical basis for the
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development of the apparently rotational flows that we observe remains unresolved
at present.

4.3. Effects of water depth

As shown in Gjøsund (2000, 2003), Miche’s (1944) extension of Gerstner’s theory
to periodic motions in finite depth predicts that �UE = −Us(z) and thus that UL

is constant even for values of kH ≈ 1 or less. In contrast, while UL is constant for
the experiments cited in § 3, this behaviour does not hold for all such experiments
reported in the literature. For example, neither Klopman’s (1994) velocity profiles
presented in Groeneweg & Klopman (1998) nor those of Kemp & Simons (1982)
show constancy of UL. To illustrate this, in figure 4 we have also plotted Klopman’s
(1994) data in the same terms as we plotted our data. Klopman’s data along with our
results for the shallowest flows (in terms of kH) make clear that for shallow-water
waves, i.e. kH ≈ 1, UL is not constant. For example, the Klopman experiment has
kH =1.06, whereas the smallest value of kH for the other experiments shown in
figure 4 was 1.4.

Given that the wave–current interaction theories of Huang & Mei (2003) and
Groeneweg & Klopman (1998) largely depend on the O(ε) perturbation velocity
fields, and that these are identical for Stokes and Gerstner/Miche waves, it seems
reasonable to hypothesize that as kH → 1 (or less) the interaction of the surface
wave with the bottom boundary layer becomes pronounced, thus altering the vertical
variation of UL (although not its depth integral) in ways existing theory should
describe.

4.4. Implications for ocean waves

It is important to note that all of the observations reported above were made in
confined channels with mechanically generated waves (see also Gjøsund 2000). Smith
(2006) reported striking field observations of mean currents under wave groups
measured in the open ocean, finding, as we do, that mean Lagrangian flows are
unaltered by superimposed waves. Thus, we must conclude that the laboratory
observations we report do not reflect some artefact of the laboratory but rather
the real behaviour of some surface gravity waves.

From a practical standpoint, we note that an O(ε2) mean Eulerian flow does not
affect any of the wave properties derived from the O(ε) fluctuating wave velocities, e.g.
radiation stresses (Longuet-Higgins & Stewart 1962) or the viscous boundary-layer
flows described by Longuet-Higgins. However, it does complicate matters with respect
to the nearshore transport of tracers or passive organisms (Monismith & Fong 2004):
observations of currents must be corrected for the Stokes drift (e.g. per 5) whereas
if UL is not changed by waves, a priori predictions of transport need not account
for the waves at all, except to the extent that they modify bottom boundary-layer
structure.

5. Conclusions
We have presented evidence gathered from several different experiments that waves

generated mechanically in the laboratory do not change the Lagrangian mean velocity
until they are sufficiently steep to break. In contrast to existing theory, this behaviour
occurs whether or not the flow is turbulent and is present only when the waves are
present. Smith (2006) show that this behaviour is not confined to the laboratory, and
so what we observe may not necessarily be an artefact of how waves behave in the
laboratory. Most surprisingly, our observations (and those of Gjøsund 2003 and Smith
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2006) are most simply explained if we postulate that our waves are Gerstner waves,
waves with closed orbits, or their finite-depth relatives. If this is true, and there is
some evidence to the contrary (see § 4.2), the challenge that awaits wave theoreticians
is to determine how these waves are generated and how they might transfer vorticity
horizontally through the fluid. However, from a purely experimental standpoint, it is
clear that the majority of the existing observations match the Gerstner wave model
better than they do the classical Stokes model, at least near the surface.
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Appendix
Application of the Mellor (2003, hereinafter referred to as M03) theory to waves ad-

vancing into still water extended classical radiation stress theory (Longuet-Higgins &
Stewart 1962) to include vertical variations in mean flows interacting with waves.
M03 derived conservation equations for mean mass and momentum including the
effects of monochromatic waves using the sigma transformation of the vertical
position,

z = η̂ + ζD + s̃ (A 1)

where

D = η̂ + H,

s̃ = a
sinh(kD(1 + ζ ))

sinh(kD)
cos(kx1 − σ t),

ζ varies between −1 (the bottom) and 0 (the free surface, which has the variable part
η̂). M03 expresses both continuity and hydrostatic momentum equations in terms of
the sum of the Eulerian mean velocity and the Stokes drift velocity as

Uα = ûα + usα, (A 2)

where α = 1, 2 refer to the two horizontal directions. Note that ûα = (UE)α , i.e. the
caretted variables represent the mean flow whereas variables marked with ∼ represent
the waves, and variables marked with a prime represent turbulence. In terms of these
variables, continuity (which includes the transformed vertical velocity Ω) is written
as

∂(DUα)

∂xα

+
∂Ω

∂ζ
+

∂η̂

∂t
= 0, (A 3)

and momentum conservation is

∂(DUα)

∂t
+

∂(DUαUβ)

∂xβ

+
∂(ΩUα)

∂ζ
+ gD

∂η̂

∂xα

= −∂Sαβ

∂xβ

+
∂(s̃αp̃)

∂ζ
− ∂

∂ζ
〈w′u′

α〉, (A 4)
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where the wave interaction terms are

Sαβ = kDE

[
kαkβ

k2
FCSFCC + δαβ(FCSFCC − FSSFCS)

]
,

s̃αp̃ = (FCC − FSS)E
1/2 ∂

∂xα

(E1/2FSS).

Here E = ga2/2 is the energy density. M03 defines FCC etc., the various functions of
kD and ζ and shows that in the limit where kD → ∞, they all asymptote to exp(kDζ ),
in which case

Sαβ = DE
kαkβ

k
exp(2kDζ ),

s̃αp̃ = 0,

⎫⎬
⎭ (A 5)

and the momentum equations reduce to

∂(DUα)

∂t
+

∂(DUαUβ)

∂xβ

+
∂(ΩUα)

∂ζ
+ gD

∂η̂

∂xα

= − ∂

∂xβ

[
DE

kαkβ

k
exp(2kDζ )

]
− ∂

∂ζ
〈w′u′

α〉. (A 6)

If we focus on the simple case of long-crested (two-dimensional) waves advancing
into still water with no ambient turbulence, then

∂(DU1)

∂t
+

∂(DUβU1)

∂xβ

+
∂(ΩU1)

∂ζ
+ gD

∂η̂

∂x1

= − ∂

∂x1

[DEk exp(2kDζ )].

For small-amplitude waves, we can make the approximation that D � H and that
advective momentum terms are negligible and so

∂U1

∂t
+ g

∂η̂

∂x1

= −k exp(2kz)
∂E

∂x1

. (A 7)

In this limit, continuity reads

H
∂U1

∂x1

+
∂Ω

∂ζ
+

∂η̂

∂t
= 0. (A 8)

Consider a wave front that can be described as

E = E0

[
xf − x

�x

]
for xf − x � �x

= E0 for xf − x > �x,

where xf = Cgt is the position of the leading edge of the wave front that is �x wide.
Thus,

∂E

∂x1

= − E0

�x
for xf − x � �x

= 0 for xf − x > �x.

Thus for a period of time �t = �x/Cg , the radiation stress gradient acts, so that if
we integrate across the front of the wave, we find that

�U1 = −g
∂η̂

∂x1

�x

Cg

+
g(ak)2

2kgCg

exp(2kz) = −g
�η̄

Cg

+ Us(z), (A 9)
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where Us(z) is the Stokes drift velocity associated with the constant wave amplitude
existing after the front has passed. Thus, in terms of the mean Eulerian flow there is
only a change in the depth-independent mean flow

�û‘1 = �UE = −g
�η̄

Cg

.

In a like fashion, continuity can be integrated to give

�η =
Cg

gH + C2
g

0∫
−H

Usdz =
CgQs

gH + C2
g

and thus we find that

�UE = −g
Qs

gH + C2
g

� −Qs

H
.

Thus, as found by Longuet-Higgins & Stewart (1962), the mean Eulerian flow only
cancels the Stokes drift transport in an integral fashion.
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